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Kinetic self-avoiding trails are introduced and used to generate a substrate of randomly quenched flow
vectors. A sandpile model is studied on such a substrate with asymmetric toppling matrices where the precise
balance between the net outflow of grains from a toppling site, and the total inflow of grains to the same site
when all its neighbors topple once, is maintained at all sites. Within numerical accuracy this model behaves in
the same way as the multiscaling Bak, Tang, and Wiesenfeld model.
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Accurate determination of the critical exponents and
thereby precise distinction of critical behaviors among the
different universality classes are always regarded as very im-
portant tasks in the field of critical phenomena, since this
study helps in understanding as well as identifying the cru-
cial factors that determine the critical behaviors. This prob-
lem, however, is still open in the phenomenon of self-
organized criticality(SOC) in spite of extensive research
over the last several years. More precisely, in the sandpile
model of SOC the question of whether the two very impor-
tant models, namely the deterministic model by Bak, Tang,
and Wiesenfeld(BTW) [1] and the stochastic Manna sand-
pile [2], belong to the same universality class or not has not
been fully settled yet. A number of works claimed that they
belong to the same universality class[3–5], whereas a num-
ber of other papers[6–8] argue in favor of their universality
classes being different. However, what was very much lack-
ing until recently is the precise identification of a key factor
which may control the two behaviors.

In SOC [9,10] a system evolves to a critical state by a
self-organizing dynamics under a constant, slow external
drive in the absence of a fine tuning parameter. The signature
of the critical state is the spontaneous emergence of long-
ranged spatiotemporal correlations in the stationary state.
The concept of SOC has been used to explain nonlinear
transport processes of physical entities like mass, energy,
stress, etc., in phenomena like sandpiles[1,2], earthquakes
[11], forest fires [12], biological evolution[13], etc. The
transport manifests itself as intermittent activity bursts called
avalanches. Sandpile models are the prototype models of
SOC. In spite of extensive efforts the BTW model resisted to
follow the finite-size scaling(FSS) ansatz and has been
shown recently to obey a multiscaling behavior[14,15]. On
the other hand, scaling behavior in the Manna stochastic
sandpile[2] is observed to be well behaved[7,8,15].

A deterministic sandpile model can be defined suitably on
an arbitrary graph by an integer toppling matrix(TM) D [10].
For example, on a square lattice of linear sizeL, the number
of sand grains at sitei is denoted byhi. Sand grains are
added to the system one by one ashi →hi +1. A threshold
value Hi of the number of grains is associated with every
site. A toppling occurs at the sitei when hi .Hi. After the
toppling the system is updated using the TM of sizeL2

3L2 ashj →hj −Di j for j =1 to L2, whereDii =Hi .0 for all i
and Di j ø0 for all i Þ j . Therefore during a toppling at the

site i, the number of grains at this site is reduced byDii ,
whereas −Di j number of grains flow out to all sitesj , j =1 to
L2. A toppling at one site may make some of its neighboring
sites unstable, which may trigger topplings at further neigh-
borhoods, thus creating an avalanche of topplings in a cas-
cade. The BTW model is a special case of deterministic
sandpiles where the TM has a simple structure likeHi =4 and
Di j =D ji =−1 for each bondsi j d, otherwise zero[10]. In the
Manna stochastic sandpile model each grain of the toppling
site is transferred to a randomly selected neighboring site
implying that the TM has the annealed randomness and the
elements of theD matrix are constantly updated during the
whole course of a given avalanche.

Recently, a single sandpile model with quenched random
toppling matrices is proposed which captures the crucial fea-
tures of different sandpile models[16]. In this model the
elements of the TM are quenched random variables; once
their values are selected in the beginning, they remain un-
changed. The dynamics of the sandpile is followed with this
TM and the data for avalanches are averaged over different
random realizations of TMs. In this model, there can be two
possible situations. In the “undirected” case the TM is sym-
metric, i.e.,Di j =D ji whereas in the “directed” case the TM is
asymmetric, i.e.,Di j ÞD ji in general. Here,Di j is nonzero
only for i = j and for each bond of the lattice. It is argued that
the behavior of the undirected model is similar to the BTW
model, whereas that of the directed model is similar to the
Manna model. The distinction between the two models is
made even more precise by defining two quantities likeHi
=−o jÞ1Di j , i.e., the total number of grains distributed to the
neighbors in a single toppling andHi8=−o jÞ1D ji , which is
the number of grains received by the sitei when its every
neighbor j topple for once. It has been suggested that the
precise balance at all sites(except at the boundary sites),

Hi = Hi8, s1d

ensures that the model obeys the same multiscaling as in the
BTW model. For the directed model this precise balance is
absent in general and the model shows FSS with the same
exponents as in the Manna sandpile model.

In this paper we extend the results of this paper[16] and
make the conclusion even more precise. We claim that only
the precise balanceHi =Hi8, or the absence of it, determines if

PHYSICAL REVIEW E 71, 015101(R) (2005)

RAPID COMMUNICATIONS

1539-3755/2005/71(1)/015101(4)/$23.00 ©2005 The American Physical Society015101-1



a model sandpile would belong to the BTW or Manna uni-
versality class, irrespective of the TM being symmetric or
asymmetric.

A quenched configuration of random flow vectors which
corresponds to an asymmetric TM whose elements satisfy
Eq. (1) is generated in the following way. Let the neighbors
of the sitei be denoted by 1, 2, 3, and 4. We first observe that
if one increases theD value of any one of the four outgoing
bonds, saysi3d by an amountd, the bondsi3d becomes
asymmetric and it increasesHi by the same amount. Simi-
larly, if we increase theD value of an arbitrary incoming
bond to the sitei, say s2id by d again, the bonds2id also
becomes asymmetric andHi8 increases by an amountd.
Therefore, as a result of both the operations the precise bal-
ance ofHi =Hi8 is strictly maintained. In general, a series of
such bond asymmetrizations can be done randomly by start-
ing from any arbitrary sitei, selecting randomly an arbitrary
outgoing bondsi j d, increasingDi j by d, going to the sitej ,
selecting an arbitrary outgoing bonds jkd fÞs ji dg, and in-
creasingD jk also by the same amountd, then going to the
site k, and so on. The path obviously cannot visit a bond of
the lattice more than once and the final point to stop must be
the starting point. Such a path can intersect itself but always
one of the outgoing bonds which has not been asymmetrized
yet is selected randomly. Since at each site on the path theD
values of either a single or a double pair of incoming and
outgoing bonds have been increased by the same amountd
the balance ofHi =Hi8 is maintained at all sites on the path.

A self-avoiding trail is a random walk which does not
visit one bond of the lattice more than once[17]. A random
configuration of a self-avoiding trail is generated by growing
a random walk which terminates when a bond is visited more
than once. In contrast a kinetic self-avoiding trail(KSAT) is
executed with a little more intelligence. At each site, to make
a step, the walker first finds out the subset of bonds which
has not been visited yet and then steps randomly along any
one of these bonds with equal probability. Such a walk can
also terminate only when it visits the origin for the third time
(Fig. 1). A similar definition of kinetic growth walk or grow-
ing self-avoiding walks have been studied in the literature
and it is argued that such very long walks behave in the same
way as ordinary self-avoiding walks[18].

First, we observe that KSATs have very interesting and
nontrivial statistics. For example, the probability distribution
that a KSAT returns to the origin for the first time aftern
steps has a scaling form like

Dsnd , L−bGsn/Ldfd, s2d

where the scaling functionGsxd,x−g as x→0 such thatg
=b /df and Gsxd→ decreases to zero very fast whenx→1.
We estimateddf <1.905,b<2.237 which givesg<1.174
[Fig. 2(a)]. The cutoff exponentdf is also recognized as the
fractal dimension of the KSATs since the number of steps on
the walks whose sizes are of the order ofL varies asLdf. One
can also measure the value ofdf directly. The mean-square
end-to-end distancekR2sndl of the walker from the origin
after n steps varies asn2n, where n=1/df. Simulation of
walks of lengths up to a million steps on a lattice of sizeL
=4097 givesn<0.530 so thatdf <1.886[Fig. 2(b)]. There-
fore, we conclude a mean value ofdf <1.895.

KSATs are therefore used to asymmetrize the TM. We
start with a TM whose elements are all initially zero corre-
sponding to a periodicL3L lattice. The walker starts from
an arbitrarily selected site, executes a KSAT which finally
stops when it comes back to the origin for the first time. The
D values of every outgoing bond visited from each site are
then increased byd, which is selected as a random integer
number between 1 and 2. A number of such KSAT loops are
then generated one by one starting from arbitrarily selected
sites and with randomly selectedd values. The process stops
only when all bonds are asymmetrized at least once. The
periodic boundary condition is then lifted. The TM so gen-
erated is asymmetric in<92.5% bonds but maintains the
precise balance ofHi =Hi8 strictly at all sites except on the
boundary. The lattice is now ready to study the sandpile

FIG. 1. A KSAT loop on the square lattice starting from the
encircled site and coming back to the same site after 90 steps.

FIG. 2. (a) Scaling of KSAT loop length distribution for system
sizesL=513, 1025, and 2049.(b) The mean-square end-to-end dis-
tance of KSATs aftern steps grows asn2n.
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model where the threshold height at each site is denoted by
Hi. Such a system has a large fluctuation of threshold heights
and their average increases with increasing the system size.

We studied three aspects of the sandpile model on the
quenched substrate generated by KSATs which are:(i) the
inner structure of the avalanches,(ii ) the avalanche statistics,
and the(iii ) wave size distributions. We observe very close
similarities of our model with the BTW model in all three
aspects as reported below.

Like any ordinary sandpile model, the dynamics starts
from an arbitrary stable distribution of sand heights and then
grains are added to the system one by one. The system even-
tually reaches the stationary state when the average height
per site fluctuates around a mean value but does not grow
any further. The size of an avalanche is measured by the total
number of topplingss. In Fig. 3 we show the picture of an
avalanche which has no holes. Different sites topple a differ-
ent number of times but the set of sites which toppled same
number of times form a connected zone. The avalanche has
an inward hierarchical structure, thenth toppling zone is
completely surrounded by thesn−1d-th toppling zone, with
the origin situated within the maximally toppled zone. This is
very similar to avalanche structure in the BTW model[19].

The finite-size scaling behavior of the probability distri-
bution Probss,Ld of avalanche sizes has the following gen-
eral form:

Probss,Ld , L−mFS s

LDD , s3d

where the scaling functionFsxd,x−t in the limit of x→0
and Fsxd approaches zero very fast whenx→1. It is now
known that the BTW model does not follow this FSS form
but has a multiscaling behavior[14,15], whereas the Manna

model follows this FSS behavior quite accurately[7].
For the present model it is observed that the collapse does

not work for a single set ofm andD and for all values ofs
andL. This is a similar situation as found in the BTW sand-
pile model and also in the case of the undirected quenched
model [16]. For example, in Fig. 4(a) we have tried unsuc-
cessfully for a data collapse as: Probss,LdL2.4 versussL−2 for
L=128, 256, and 512. Evidently the three curves separate out
from one another beyonds/L2,1. Even for smallers values
within 1,s,L2 their slopes differ slightly but systemati-
cally as 1.132, 1.135, and 1.144 forL=128, 256, and 512,
respectively, very similar to the BTW model behavior.

Furthermore, to check that the present model indeed be-
haves like the multiscaling BTW model the various moments
of Prob are evaluated[7,14,15]. Theqth moment of the ava-
lanche size distribution is defined asksql=SsqProbss,Ld. As-
suming that FSS holds for the whole accessible range of
avalanche sizes, it is known thatksql,Lssqd, where ssqd
=Dsq−t+1d for q.t−1 andssqd=0 for 0,q,t−1. Esti-
mates ofssqd are obtained from the slopes of the plot of
logksqsLdl with log L for the three system sizes mentioned
above and for 251 equally spacedq values ranging from 0 to
5. In Fig. 4(b) we plot ssqd versusq for the present model
and compare it with a similar plot for the BTW model cal-
culated for the same system sizes. The agreement is found to

FIG. 3. (Color online) Detailed structure of an avalanche. Dif-
ferent sites have toppled a different number of times: 1(circle), 2
(square), 3 (triangle up), 4 (diamond), and 5(triangle down).

FIG. 4. (a) An attempt for the scaling of the avalanche size
distribution for the present model forL=128, 256, and 512.(b)
Comparison of the moment exponentsssqd vs q and (c) dssqd /dq
vs q for the present model(solid line) and for the BTW(dotted line)
model.
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be very good, within 2%. For both modelsssqd shows
marked deviation from linearity. To analyze this nonlinearity
in more detail it is usual practice to calculatedssqd /dq
which takes the constant valueD for large q had the FSS
been valid. In contrast, in our present case we see in Fig. 4(c)
that dssqd /dq increases steadily withq for q.1 and this
plot coincides within the same accuracy with a similar plot
for the BTW model.

In a stable configuration if a grain is added to a sitei with
a heightHi it topples and the first wave is the set of all
toppled sites while sitei is prevented from a second toppling.
If i is still unstable after the first wave, the second wave
propagates. This process continues until sitei becomes stable
and the avalanche stops[20,21].

The autocorrelation function of the wave time series
hs1,s2,s3,…j of successive waves[22] is defined asCst ,Ld
=fksk+tsklL−ksklL

2g / fksk
2lL−ksklL

2g where the k. .l refers to
quenched disorder averaging. This long-range autocorrela-
tion is the consequence of the coherent and uniform spatial
structure of each wave.Cst ,Ld is found to grow steadily with
L. It scales asCst ,Ld, t−tcGst /LDcd with the same exponents
as the undirected model withtc<0.35 andDc<1. These
exponents should be compared to 0.40 and 1.02, respectively,
as determined for the BTW model[22].

To summarize, an asymmetric toppling matrix is gener-
ated using random kinetic self-avoiding trail loops on the
square lattice. The TMs generated in this way guarantees the
precise balance between the outflow of grains during a single

toppling at a site and the total number of grains flowing into
the same site when all its neighbors topple for once. A deter-
ministic sandpile model is studied on such a quenched ran-
dom lattice and the statistical behavior of its avalanches are
compared with that of the BTW model in a number of ways,
namely, the inner structure of the avalanches, the avalanche
statistics, and the wave size distributions. Within numerical
accuracy excellent agreement is observed in all three catego-
ries. We conclude, as displayed in a flow chart in Fig. 5, that
it is only the local flow balance, or absence of it, irrespective
of it being generated from a symmetric or asymmetric TM,
that determines the universality class of the sandpile model.
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FIG. 5. This flow chart shows that the precise balanceHi =Hi8,
or absence of it, determines the universality classes of different
sandpile models.
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