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Kinetic self-avoiding trails are introduced and used to generate a substrate of randomly quenched flow
vectors. A sandpile model is studied on such a substrate with asymmetric toppling matrices where the precise
balance between the net outflow of grains from a toppling site, and the total inflow of grains to the same site
when all its neighbors topple once, is maintained at all sites. Within numerical accuracy this model behaves in
the same way as the multiscaling Bak, Tang, and Wiesenfeld model.
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Accurate determination of the critical exponents andsite i, the number of grains at this site is reduced by,
thereby precise distinction of critical behaviors among thewhereas A;; number of grains flow out to all sitgs j=1 to
different universality classes are always regarded as very im-2, A toppling at one site may make some of its neighboring
portant tasks in the field of critical phenomena, since thissites unstable, which may trigger topplings at further neigh-
study helps in understanding as well as identifying the cruhorhoods, thus creating an avalanche of topplings in a cas-
cial factors that determine the critical behaviors. This probcade. The BTW model is a special case of deterministic
lem, however, is still open in the phenomenon of self-sandpiles where the TM has a simple structure Hke 4 and
organized criticality(SOQ in spite of extensive research A;;=A;=-1 for each bondij), otherwise zerd10]. In the

over the last several years. More precisely, in the sandpilg, : ; . -
; ' ! anna stochastic sandpile model each grain of the toppling
model of SOC the question of whether the two very IMPOsite is transferred to a randomly selected neighboring site

tant models, namely the deterministic model by Bak, Tan .
and Wiesenfelc{BTVB\//) [1] and the stochastic M)r:mna Sand_glmplylng that the TM has the annealed randomness and the
?Iements of thel matrix are constantly updated during the

pile [2], belong to the same universality class or not has no :
been fully settled yet. A number of works claimed that theyWhOIe course Of. agiven avglanche. .
belong to the same universality clg8s-5], whereas a num- Recently, a single sandpile model with quenched random
ber of other paperg5—8| argue in favor of their universality {OPPling matrices is proposed which captures the crucial fea-
classes being different. However, what was very much lackiures of different sandpile mode[d.6]. In this model the
ing until recently is the precise identification of a key factor €lements of the TM are quenched random variables; once
which may control the two behaviors. their values are selected in the beginning, they remain un-
In SOC[9,1Q a system evolves to a critical state by a changed. The dynamics of the sandpile is followed with this
self-organizing dynamics under a constant, slow externalM and the data for avalanches are averaged over different
drive in the absence of a fine tuning parameter. The signatur@ndom realizations of TMs. In this model, there can be two
of the critical state is the spontaneous emergence of longaossible situations. In the “undirected” case the TM is sym-
ranged spatiotemporal correlations in the stationary statemetric, i.e.,A;=A; whereas in the “directed” case the TM is
The concept of SOC has been used to explain nonlineaasymmetric, i.e.Aj; # A;; in general. HereA;; is nonzero
transport processes of physical entities like mass, energpnly fori=j and for each bond of the lattice. It is argued that
stress, etc., in phenomena like sandpilég], earthquakes the behavior of the undirected model is similar to the BTW
[11], forest fires[12], biological evolution[13], etc. The model, whereas that of the directed model is similar to the
transport manifests itself as intermittent activity bursts calledManna model. The distinction between the two models is
avalanches. Sandpile models are the prototype models ofiade even more precise by defining two quantities kke
SOC. In spite of extensive efforts the BTW model resisted to=—2;.14;;, i.€., the total number of grains distributed to the
follow the finite-size scaling(FSS ansatz and has been neighbors in a single toppling and,=-X;.,4;;, which is
shown recently to obey a multiscaling behavi@4,15. On  the number of grains received by the sitevhen its every
the other hand, scaling behavior in the Manna stochastioeighborj topple for once. It has been suggested that the

sandpile[2] is observed to be well behavéd,8,15. precise balance at all sitgexcept at the boundary sites
A deterministic sandpile model can be defined suitably on
an arbitrary graph by an integer toppling maiftiv) A [10]. Hi=H/, (1)

For example, on a square lattice of linear dizehe number

of sand grains at sité is denoted byh;. Sand grains are ensures that the model obeys the same multiscaling as in the
added to the system one by onelas-h;+1. A threshold BTW model. For the directed model this precise balance is

value H; of the number of grains is associated with everyabsent in general and the model shows FSS with the same
site. A toppling occurs at the sitewhen h,>H;. After the  exponents as in the Manna sandpile model.

toppling the system is updated using the TM of size In this paper we extend the results of this pajié] and

X L2 ash;—h;=A;; for j=1 toL?, whereA;=H;>0 for all i make the conclusion even more precise. We claim that only

and A;; <O for all i #j. Therefore during a toppling at the the precise balandg;=H;, or the absence of it, determines if
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FIG. 1. A KSAT loop on the square lattice starting from the e
encircled site and coming back to the same site after 90 steps. v
a model sandpile would belong to the BTW or Manna uni- 15 5 - - - - - .
versality class, irrespective of the TM being symmetric or (o) 100 100 100 100 100 100 10

asymmetric.

A quenched configuration of random flow vectors which  F|G. 2. (a) Scaling of KSAT loop length distribution for system
corresponds to an asymmetric TM whose elements satisf§izesl =513, 1025, and 2049b) The mean-square end-to-end dis-
Eq. (1) is generated in the following way. Let the neighborstance of KSATs aften steps grows as?".
of the sitei be denoted by 1, 2, 3, and 4. We first observe that
if one increases thA value of any one of the four outgoing
bonds, say(i3) by an amounts, the bond(i3) becomes
asymmetric and it increasé4;, by the same amount. Simi-
larly, if we increase the\ value of an arbitrary incoming
bond to the sita, say (2i) by § again, the bond2i) also
becomes asymmetric and/ increases by an amouni
Therefore, as a result of both the operations the precise bal-
ance ofH;=H; is strictly maintained. In general, a series of
such bond asymmetrizations can be done randomly by start-
ing from any arbitrary site, selecting randomly an a?/bit)r/ary =BIds e_md G()— decreases to zero very f_ast whep- 1.
outgoing bond(ij), increasingA;; by 8, going to the site, We estlmateoule.905,ﬁz2.23_7 which givesy~1.174
selecting an arbitrary outgoing bor(@) [#(ji)], and in- [Fig. 2(a)]. Th@T cutoff exponent; is also recognized as the
creasingA, also by the same amout then going to the fractal dimension qf the KSATSs since the ngmber (?f steps on
sitek, and so on. The path obviously cannot visit a bond ofN€ Walks whose sizes are of the ordetofaries ad. ™. One

the lattice more than once and the final point to stop must b§an also measure the value @ directly. The mean-square
the starting point. Such a path can intersect itself but alway§nd-to-end distancéR?(n)) of the walker from the origin
one of the outgoing bonds which has not been asymmetrizeafter n steps varies as?’, where v=1/d;. Simulation of
yet is selected randomly. Since at each site on the path the walks of lengths up to a million steps on a lattice of size
values of either a single or a double pair of incoming and=4097 givesy~0.530 so that;~1.886[Fig. 2b)]. There-
outgoing bonds have been increased by the same anduntfore, we conclude a mean value df= 1.895.
the balance oH;=H; is maintained at all sites on the path. KSATs are therefore used to asymmetrize the TM. We
A self-avoiding trail is a random walk which does not start with a TM whose elements are all initially zero corre-
visit one bond of the lattice more than onde’]. A random  sponding to a periodit X L lattice. The walker starts from
configuration of a self-avoiding trail is generated by growingan arbitrarily selected site, executes a KSAT which finally
a random walk which terminates when a bond is visited morestops when it comes back to the origin for the first time. The
than once. In contrast a kinetic self-avoiding ti@SAT) is A values of every outgoing bond visited from each site are
executed with a little more intelligence. At each site, to makethen increased by, which is selected as a random integer
a step, the walker first finds out the subset of bonds whiclmumber between 1 and 2. A number of such KSAT loops are
has not been visited yet and then steps randomly along arthen generated one by one starting from arbitrarily selected
one of these bonds with equal probability. Such a walk carsites and with randomly selectédvalues. The process stops
also terminate only when it visits the origin for the third time only when all bonds are asymmetrized at least once. The
(Fig. 1). A similar definition of kinetic growth walk or grow- periodic boundary condition is then lifted. The TM so gen-
ing self-avoiding walks have been studied in the literatureerated is asymmetric ir=92.5% bonds but maintains the
and it is argued that such very long walks behave in the samprecise balance dfl;=H/ strictly at all sites except on the
way as ordinary self-avoiding walk48]. boundary. The lattice is now ready to study the sandpile

First, we observe that KSATs have very interesting and
nontrivial statistics. For example, the probability distribution
that a KSAT returns to the origin for the first time after
steps has a scaling form like

D(n) ~ LAG(n/L%), (2)

r¥vhere the scaling functiog(x) ~x™? as x— 0 such thaty
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FIG. 3. (Color onling Detailed structure of an avalanche. Dif-
ferent sites have toppled a different number of timesgcifcle), 2
(squarg, 3 (triangle up, 4 (diamond, and 5(triangle down.

do(q)/dq

model where the threshold height at each site is denoted by
H;. Such a system has a large fluctuation of threshold height: 0
and their average increases with increasing the system size.

We studied three aspects of the sandpile model on the FiG, 4. (3 An attempt for the scaling of the avalanche size
quenched substrate generated by KSATs which @yethe  distribution for the present model fdr=128, 256, and 512(b)
inner structure of the avalanché¢g) the avalanche statistics, Comparison of the moment exponentsy) vs q and(c) do(q)/dq
and the(iii ) wave size distributions. We observe very closevs q for the present modébolid line) and for the BTW(dotted ling
similarities of our model with the BTW model in all three model.
aspects as reported below.

Like any ordinary sandpile model, the dynamics startsmodel follows this FSS behavior quite accuratgdy.
from an arbitrary stable distribution of sand heights and then For the present model it is observed that the collapse does
grains are added to the system one by one. The system eveipt work for a single set oft andD and for all values ob
tually reaches the stationary state when the average heighfdL. This is a similar situation as found in the BTW sand-
per site fluctuates around a mean value but does not growile model and also in the case of the undirected quenched
any further. The size of an avalanche is measured by the totatodel[16]. For example, in Fig. @ we have tried unsuc-
number of topplingss. In Fig. 3 we show the picture of an cessfully for a data collapse as: Ptsti.)L*>“ versussL™> for
avalanche which has no holes. Different sites topple a differk. =128, 256, and 512. Evidently the three curves separate out
ent number of times but the set of sites which toppled samé&om one another beyorsf L2~ 1. Even for smalles values
number of times form a connected zone. The avalanche hagithin 1<s<L? their slopes differ slightly but systemati-
an inward hierarchical structure, theh toppling zone is cally as 1.132, 1.135, and 1.144 for128, 256, and 512,
completely surrounded by th@-1)-th toppling zone, with  respectively, very similar to the BTW model behavior.
the origin situated within the maximally toppled zone. Thisis ~ Furthermore, to check that the present model indeed be-
very similar to avalanche structure in the BTW mogt9). haves like the multiscaling BTW model the various moments

The finite-size scaling behavior of the probability distri- of Prob are evaluatei¥,14,15. Theqth moment of the ava-
bution Prolfs,L) of avalanche sizes has the following gen- lanche size distribution is defined &) =2sProlys,L). As-

0 1 2 9 3 4 5

eral form: suming that FSS holds for the whole accessible range of
avalanche sizes, it is known th&)~ L@ where o(q)
ur S =D(q-7+1) for g> -1 ando(q)=0 for 0<qg< 7-1. Esti-
Prot(s,L) ~ L Mf( LD)’ ) mates ofco(qg) are obtained from the slopes of the plot of

log(s(L)) with logL for the three system sizes mentioned
where the scaling functiotF(x) ~x"" in the limit of x—0  above and for 251 equally spacgdalues ranging from 0 to
and F(x) approaches zero very fast wher-1. It is now 5. In Fig. 4b) we plot o(q) versusq for the present model
known that the BTW model does not follow this FSS form and compare it with a similar plot for the BTW model cal-
but has a multiscaling behavigt4,15, whereas the Manna culated for the same system sizes. The agreement is found to
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be very good, within 2%. For both models(q) shows Undirected Directed

marked deviation from linearity. To analyze this nonlinearity Model Model

in more detail it is usual practice to calculatle(q)/dq (Sy“}"ﬁ)mc (Asymuetric

which takes the constant valu® for large q had the FSS

been valid. In contrast, in our present case we see in Fy. 4 ~.

that do(q)/dq increases steadily witlq for g>1 and this H-H H.% H

plot coincides within the same accuracy with a similar plot im i L

for the BTW model. j {

In a stable configuration if a grain is added to a sigth BIW. Manna
a heightH; it topples and the first wave is the set of all Universality Universality

toppled sites while siteis prevented from a second toppling.
If i is still unstable after the first wave, the second wave F|G. 5. This flow chart shows that the precise balahgeH!,
propagates. This process continues untilisliecomes stable  or absence of it, determines the universality classes of different
and the avalanche stop20,21. sandpile models.

The autocorrelation function of the wave time series
{s1,5,,53,...} of successive waveR?2] is defined a<C(t,L)
=[(sesoL (SOt 1/ (s —(s0f] where the (..) refers to  toppling at a site and the total number of grains flowing into
quenched disorder averaging. This long-range autocorrelahe same site when all its neighbors topple for once. A deter-
tion is the consequence of the coherent and uniform spatighinistic sandpile model is studied on such a quenched ran-
structure of each wav&(t,L) is found to grow steadily with  dom lattice and the statistical behavior of its avalanches are
L. It scales a€(t,L) ~ t"G(t/LPe) with the same exponents compared with that of the BTW model in a number of ways,
as the undirected model with.=~0.35 andD.~1. These namely, the inner structure of the avalanches, the avalanche
exponents should be compared to 0.40 and 1.02, respectiveltatistics, and the wave size distributions. Within numerical
as determined for the BTW modg22]. accuracy excellent agreement is observed in all three catego-

To summarize, an asymmetric toppling matrix is gener-ries. We conclude, as displayed in a flow chart in Fig. 5, that
ated using random kinetic self-avoiding trail loops on theit is only the local flow balance, or absence of it, irrespective
square lattice. The TMs generated in this way guarantees tha it being generated from a symmetric or asymmetric TM,
precise balance between the outflow of grains during a singléhat determines the universality class of the sandpile model.
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